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Abstract
We have obtained a new interatomic potential for Au in the framework of the
second-moment approximation to the tight-binding model by fitting the total
energy of the metal as a function of the volume computed by first-principles
calculations. The scheme was validated by calculating the bulk modulus,
elastic constants, vacancy formation energy and relaxed surface energies of
Au, which were found to be in fair agreement with experiment. We also have
performed molecular-dynamics simulations at various temperatures and we
have determined the temperature dependence of the lattice constant, mean-
square displacements, as well as the phonon density of states and the phonon
dispersion curves of the metal. The agreement with the available experimental
data is much better than previous works based on the same approximation.

1. Introduction

The application of ab initio methods for atomistic simulations of materials is restricted to a
short time scale and a few hundreds of atoms in spite of increasing computer speeds. In order
to simulate larger systems (up to 107–108 particles) and longer time scales, empirical and
semi-empirical interatomic potentials are found to be very useful. They include many-body
terms that are meant to take into account the local electronic density. Among several many-
body potentials, the most popular are the embedded atom model (EAM), the Finnis-Sinclair
potentials (FS) and the tight-binding (TB) potential in the second moment approximation
(SMA). Although based on different approaches, these models share some common features
(see e.g. [1]). Despite their simplicity, in many cases, these potentials provide a good and
quick description of the physical behaviour of metallic systems. For this reason, they should
play a supplementary role to other more accurate techniques.

0953-8984/04/468399+09$30.00 © 2004 IOP Publishing Ltd Printed in the UK 8399

http://stacks.iop.org/cm/16/8399


8400 H Chamati and N I Papanicolaou

In the SMA scheme [2– 4], the total cohesive energy of the system consists of a band
term, proportional to the square root of the second moment of the density of states (DOS) [5],
and a repulsive pair-potential term which contains the non-band-structure parts of the energy,
such as electrostatic and exchange–correlation interactions. The SMA expression of the total
energy is based on a small set of empirical parameters that are usually determined by matching
with experimental data, including the cohesive energy, lattice constant (by a constraint on
the atomic volume), bulk modulus and independent elastic constants of the system in the
appropriate crystal structure at the ground state [6]. The extension of the range of the potential
includes interaction up to the fifth neighbours, which provide better and more accurate results
compared to experimental information (see [6, 7] and references therein).

The above-mentioned approach has been applied to model the interaction in noble metals
[6, 7]. While for Cu and Ag, the agreement achieved for the calculated quantities compared to
the experimental measurements was very good, the results for gold were very poor. The vacancy
formation energy and the surface energies are considerably lower than the experimental values.
Furthermore, the thermal expansion and mean-square displacements are overestimated, while
the melting point is anticipated. Moreover, the cutoff phonon frequency is underestimated and
the phonon DOS of the metal is too narrow, compared to the experiment. These discrepancies
were attributed to the failure of SMA for Au [6, 7].

The aim of the current work is to present a new interatomic potential within the SMA of
the tight-binding theory, which provides better agreement with experiment than the previous
models [6, 7] for the above-mentioned quantities. Our approach is similar to that of Kallinteris
et al [7]; that is, in order to obtain the necessary parameters, we adjust the total-energy
expression of the SMA to first principles total-energy calculations as a function of the
lattice constant. The difference is that in the present scheme we have used a wider lattice
constant grid than that used in [7]. We tested the quality of our parameters by computing
the bulk modulus, elastic constants, vacancy formation, and surface energies. Furthermore,
we performed molecular-dynamics (MD) simulations at various temperatures, obtaining the
temperature dependence of the lattice constant and the mean-square-displacements (MSD) as
well as the phonon DOS and the phonon dispersion curves along the high-symmetry vectors.
The results originating from simulations are compared to the available experimental quantities
and to the values of previous models in the SMA approach [6, 7], as well as the recently
proposed modified embedded atom potential (MEAM) [8] based on 14 parameters including
three experimental values.

The paper is organized as follows: in section 2, we describe the computational method,
while the results and their comparison with experimental data are discussed in section 3.
Finally, our conclusions are drawn in section 4.

2. Computational methodology

The electronic band structure of Au was calculated by the symmetrized APW method in the
muffin-tin approximation [9]. The self-consistent semirelativistic calculations yielded the
crystal potential, charge density and eigenvalue sum, which were used in Janak’s expression
for the total energy [10]. The exchange and correlation interactions were treated by the
Hedin–Lundqvist formalism [11]. The computations were performed for both the fcc and
bcc structures of the considered metal. A mesh of 89 k points in the irreducible Brillouin zone
for the fcc and 55 k points for the bcc structure was used. The total energy was evaluated for
five different lattice parameters for each structure and the resulting variation was fitted to a
parabolic function [12].
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In the present work, we choose a tight-binding potential in the second moment
approximation, according to which the total energy of the system can be expressed as

E =
∑

i


∑

j �=i

A e−p(rij/r0−1) − ξ

√√√√∑
j �=i

e−2q(rij/r0−1)


 , (1)

where the first sum over j is a Born–Mayer type pairwise potential adapted for the description
of the repulsive contributions, while the second one represents the band-structure term. In
the above expression (1), rij is the distance between atoms i and j, while the interactions
up to the fifth neighbours were taken into account. The parameter r0 is taken to be equal to
the nearest-neighbour distance in equilibrium as calculated by the APW method, while the
adjustable free parameters A, ξ, p and q in this approach have been determined by fitting to the
total energy of the system as computed by first-principles APW calculations as a function of
the lattice constant for both the fcc and bcc structures. We used the total energies for both fcc
and bcc structures, since it was found that the agreement with the experimental values for the
elastic constants was better than the one obtained when using only the fcc structure [13]. The
fitting procedure was performed with the aid of the MERLIN package, which provides several
minimization algorithms [14]. It should be noted that before performing the fitting procedure,
we uniformly shifted the computed total APW energies so that they match, at the minimum of
the fcc structure at 0 K, the experimental cohesive energy of Au (3.78 eV [15]).

Using the above interatomic potential, we performed MD simulations in the canonical
(NVT) ensemble in order to validate the model at various temperatures. The system is made
up of 4000 atoms arranged on an fcc lattice. The simulation box contained 40 atomic layers
with 100 atoms each, in which the periodic boundary conditions were imposed in the three
space directions. The equations of motion were integrated by means of the Verlet algorithm
and a time step δt = 5 × 10−15 s. The system was equilibrated at the desired temperature
during 1000 integration time steps (5 ps), which were sufficient to obtain stationary values for
the kinetic and potential energies. The thermodynamic averages were computed satisfactorily
over 50 ps trajectories. The vacancy formation and the surface energies were calculated at
T = 0 K by using a quasidynamic minimization procedure. The free surfaces were produced
by fixing the dimensions of the computational box at a length twice as large as the thickness
of the crystal along the direction normal to the surface; an infinite slab was thus constructed
delimited by two free surfaces parallel to (100), (110) or (111) planes. The above length
is enough to avoid interactions between the periodic slabs and, in addition, the number of
occupied atomic layers is sufficient to reproduce bulk-like properties in its central part.

The value of the lattice constant at each temperature was chosen so as to result in zero
pressure in the system, while the atomic mean-square displacements were determined on a
layer-by-layer basis from equilibrium averages of the atomic density profiles. Finally, the
phonon DOS was obtained from the Fourier transform of the velocity autocorrelation function
and the spectral densities were calculated by Fourier-transforming the velocity- and position-
dependent autocorrelation function for a given polarization and a specific k vector in the
Brillouin zone. Consequently, the phonon-dispersion curves were deduced from frequencies
found in the corresponding spectral densities. In particular, we used a mesh of 20 k vectors
along each symmetry direction and then we performed a cubic spline interpolation.

3. Results and discussion

In figure 1, we plot the opposite of the computed cohesive energies of Au as a function of
the volume in the fcc and bcc structures (solid lines) after the appropriate energy shift, as
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Figure 1. Volume dependence of the calculated cohesive energies of Au from APW (solid line)
and the results of the fitting procedure (dot-dashed line). The arrows indicate the locations of the
minima of APW and fitting curves.

Table 1. Potential parameters of equation (1) deduced by fitting to the calculated cohesive energy
as a function of the volume, along with the corresponding values in [6, 7].

ξ (eV) A (eV) q p r0 (Å)

Present work 1.32795 0.08170 3.12572 14.6027 2.89267
Parameters [6] 1.790 0.2061 4.036 10.229 2.8843
Parameters [7] 10.9249 13.5959 2.7381 6.3469 1.7517

Table 2. Calculated and experimental [17] lattice constants, along with the cohesive energies [15]
for Au.

Calculated

Experimental Present work SMA [6] SMA [7]

a0 (Å) 4.07 4.068 4.079 4.06
E0 (eV atom−1) 3.78 3.76 3.779 3.77

discussed in section 2. The result of the fitting procedure (dot-dashed line) is presented in
the same figure. From this adjustment, we have determined the values of the parameters of
equation (1), which are presented in table 1, together with those of [6, 7]. In table 2, we report
results for the calculated equilibrium lattice constants and cohesive energies within the present
TB-SMA along with those of [6, 7] in comparison with experiment. The equilibrium lattice
constant calculated by theAPW method was 4.09 Å, while the corresponding value of the fitted
SMA was 4.068 Å. The parameters have been used to calculate the bulk modulus, using the
method proposed in [12]. The elastic constants of Au were calculated at the lattice constant
corresponding to the lowest potential energy following the method of Mehl et al [16]. In table 3,
we report these calculated values, those in [6–8] and the corresponding experimental values
[17]. Our values for the bulk modulus B and elastic constant C12 are in good agreement
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Table 3. Computed properties of Au along with experimental, SMA results [6, 7] and MEAM
results [8].

Calculated

Experimental Present work SMA [6] SMA [7] MEAM [8]

Lattice properties
B (1011 Pa) 1.69a 1.835 1.65 1.69 1.803
C11 (1011 Pa) 1.89a 2.36 1.87 1.84 2.015
C12 (1011 Pa) 1.593a 1.56 1.54 1.61 1.697
C44 (1011 Pa) 0.42a 1.011 0.45 0.28 0.454

Vacancy
E

f
v (eV) 0.94b 1.402 0.75 0.49 0.90

Surfaces
γs(110) (J m−2) 1.50c 1.198 0.626d 0.45 1.179
γs(100) (J m−2) 1.50c 1.056 0.58d 0.44 1.138
γs(111) (J m−2) 1.50c 0.939 0.493d 0.37 0.928

Phonon frequencies
νL(X) (THz) 4.61e 5.05 3.20 3.16f

νT (X) (THz) 2.75e 3.50 1.51 1.97f

νL(L) (THz) 4.70e 5.00 3.24 2.93f

νT (L) (THz) 1.86e 2.36 2.27 1.31f

a From [17].
b From [19].
c From [20].
d These values are computed for this paper using the parameters of the potential from [6].
e From [25].
f These values are computed for this paper using the parameters of the potential from [7].

with experimental measurements [17], the TB method of Mehl and Papaconstantopulos [18]
and those of MEAM reported in [8], while the disagreement for the C11 is about 25%.
Moreover, there is an important discrepancy for C44. It should be noted that the values in
[6] are very close to the experimental elastic constants, since their potential was fitted to those
quantities.

We have determined the vacancy formation energy, using the quasidynamic minimization
method and the procedure described in section 2. The result for this quantity, after relaxation
of the whole system, is given in table 3 along with the experimental value [19]. The result
predicted by TB-SMA is higher than the experimental value and those in [6–8]. We have
also computed the relaxed surface energies of low index surfaces (100), (110) and (111). A
comparison of these results to the experiment in [20] and the reported results in [6–8] is shown
in table 3. Notice that the experimental energies are those of polycrystalline surfaces. The
calculated surface energies in table 3 are in better agreement with experiment [20] compared to
the computed values in [6, 7] and are comparable to the results obtained within the framework
of MEAM [8]. Our potential model follows the trends usually found on fcc metallic surfaces:
the largest surface energy is that of the (110) face, while the smallest one is that of the (111)
face. These results are compatible with the experimental data [21] since we have found the
ratio γs(110)/γs(100) = 1.13 in good agreement with the experimental value of 1.11 and the
ratio γs(110)/γs(111) = 1.28 compared to the experimental one of 1.25.

In the following, we present some finite-temperature results for various structural and
thermal properties. In figure 2, we present the thermal expansion of Au as a function of
temperature, deduced from our MD simulations along with the corresponding experimental
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Figure 2. Temperature dependence of the lattice expansion for Au. The experimental results are
taken from [19, 22].
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Figure 3. Mean-square displacements of bulk Au as a function of the temperature, compared to
the experimental values of [23] and the results obtained using the TB-SMA potential of [6, 7].

values [19, 22] and the respective data in [6, 7]. It is obvious that the agreement of our
factors with the experimental ones is excellent and much better than the results in [6, 7]. The
linear expansion coefficient at 0–100 K is found to be 1.4 × 10−5 K−1 to be compared to the
experimental value of 1.4 × 10−5 K−1 [15] and the calculated value of 1.42 × 10−5 K−1 for
MEAM [8], as well as those of 2.3 × 10−5 K−1 obtained using the model of Cleri and Rosato
[6] and 2.4 × 10−5 K−1 of Kallinteris et al [7].

In figure 3, we compare the temperature dependence of our computed atomic MSDs
(open circles) with experimental data (filled triangles) [23] and results obtained with the
model proposed in [6] (filled circles) and [7] (open triangles). Our results are lower than
the experimental values, but more accurate than those obtained by the SMA method in [6, 7].
According to Lindemann’s criterion [24], the melting point can be empirically estimated by
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Figure 4. Phonon DOS ofAu (in arbitrary units) at 300 K deduced from the present MD simulations
along with the results obtained using the TB-SMA potential of [6, 7].

the MSD values. In our case, it is found to be 1630 K; therefore, it is clear that the present
model results in a higher value for the temperature of melting, compared to the experimentally
measured value of 1338 K [15] and the result of 1410 K obtained with the MEAM of Lee et al
[8], while previously proposed models [6, 7] gave an important underestimation of the melting
point (about 850 K).

In figure 4, we present the calculated phonon DOS at room temperature obtained by
performing MD simulations. We observe that the main features of the phonon frequency
spectrum are well reproduced. The shape of the curve is smooth as a consequence of the use
of the velocity autocorrelation function. Comparing our phonon DOS with previous works
based on the TB-SMA potentials [6, 7], we find that our results are superior since the cutoff
frequency is closer to the experimental one [25] and the width of the phonon spectrum is
comparable to the corresponding one from experiment, while the parameters in [6, 7] produce
a narrow spectrum. In table 3, we compare our calculated results for the transverse as well
as the longitudinal branches of the frequencies ν(X) and ν(L) at the borders of the Brillouin
zone to the experimental [25] and the SMA results in [6, 7]. It is clear that our results are more
accurate than those of the SMA approach in [6, 7].

The phonon-dispersion curves are displayed in figure 5 together with the experimental
results obtained using inelastic scattering techniques [25]. The main trends of the phonon-
dispersion branches are reproduced, but there is a slight disagreement at small q, especially for
transverse modes, due to the discrepancy in the elastic constants. Moreover, there is a slight
overestimation of the cutoff frequency in the Brillouin-zone boundaries. This is compatible
with the inaccuracy found in our calculated value of C44 and the late melting of the system.

4. Conclusions

We presented an interatomic potential of Au within the SMA of TB theory by adjusting the
parameters of the energy functional to first-principles total energy as a function of the volume.
The resulting model potential was used to compute the bulk modulus, elastic constants, vacancy
formation and surface energies. Our theoretical predictions show satisfactory accuracy except
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for the elastic constant C44. The calculated surface energies are in better agreement with
measurements than the computed values of previous SMA models and, in addition, show the
correct experimental anisotropies.

Finite temperature MD simulations were used to deduce the temperature dependence of the
thermal lattice expansion and the mean-square displacements as well as the phonon DOS and
the phonon-dispersion curves. The predicted values are in acceptable agreement compared to
the experimental results. It should be noted that the present SMA model provides much better
accuracy for the determination of the above quantities compared to the previously proposed
SMA potentials. We conclude that the current potential can be useful in long simulations for
the determination of the related physical properties of gold systems such as epitaxial growth,
surface diffusion, island formation, nanostructures and thermal properties. However, it is
expected to fail in describing the liquid phase for temperatures slightly higher than the melting
temperature.

Notice that despite the relatively simple form of the potential and the small number of
parameters used to fit the total energy, the potential we present here has shown its ability to
reproduce quite well some experimental results and has a comparable weight as the recently
proposed MEAM potential [8], where 11 parameters are used to fit the total energy.
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